Distributed systems design

Academic Year: (2020 / 2021)

Department assigned to the subject:

Coordinating teacher: GARCIA CARBALLEIRA, FELIX

Type: Electives ECTS Credits : 3.0

Year : 1 Semester : 1

OBJECTIVES

- Modelling, and evaluatging distributed systems.
- Ability to design distributed applications.
- To know the main aspect of distributed system design.
- To know and apply simulation techniques in distributed systems.
- Ability to analyze technical documents and scientifc papers.
- Ability to transmit the results of a scientific research.

DESCRIPTION OF CONTENTS: PROGRAMME

- 1. Introduction to distributed systems
 - Types of computing systems
 - Elements of a distributed system
 - Message passing
 - Design of distributed systems
 - The CAP theorem
 - Middlewares

2. Distributed Algorithms

- Clock synchronization
- Mutual exclusion
- Leader election
- Distributed consensus
- Group communication
- Global states
- Case of study: ZooKeeper
- 3. Fault tolerant
 - Fault tolerant concepts
 - Replication
- 4. Simulation of distributed systems
 - Discret event simulation
 - Generation of random variables
 - Metrics of performance
 - Simulation experiments
 - Error estimation
 - Comparing two alternatives
 - Introduction to SimGrid
- 5. Scheduling in distributed systems
 - Scheduling
 - Scheduling methods
 - Process migration
 - Scheduling of independent tasks

Review date: 06/07/2020 09:44:18

- Scheduling of parallel applications
- Heuristics
- Load balancing algorithms
- Assignation of processors
- 6. Clusters and grid computing
 - Architecture of a cluster
 - Types of cluster
 - Single system image
 - Techniques to tolerate latency in large scale systems
 - Grid computing
 - Globus
- 7. HPC in distributed environments
 - High performance computing
 - HW platforms
 - MPI
- 8. Distributed file systems
 - Architecture of a distributed storage system
 - Network file systems
 - Distributed file systems
 - Shared disks file systems
 - Parallel file systems
 - I/O parallel interfaces
 - I/O parallel optimizations
- 9. Large scale distributed systems
 - Peer to Peer
 - Volunteer computing
 - Cloud computing
 - Big Data
 - Introduction to Apache Hadoop

LEARNING ACTIVITIES AND METHODOLOGY

- Practical and Theoretical lectures
- Student work

ASSESSMENT SYSTEM

% end-of-term-examination/test:	0
% of continuous assessment (assigments, laboratory, practicals):	100

The assessment will be based on:

- Reading and description of research papers (30%).
- Experimental simulation project (40%)
- Reading, analysis and public presentations of research papers by students (30%)

BASIC BIBLIOGRAPHY

- G. Coulouris, J. Dollimore, T. Kindberg Distributed Systems, Concepts and Design, 5^a ed., Addison Wesley, 2012

- G. Sukmar Distributed systems: an algorithmic approach, CRC Press, Taylor & Franciss Group, 2015

- K. Hwang, G. C. Fox, J. J. Dongarra Distributed and cloud computing. From parallel processing to the Internet of Things, Morgan Kaufmann, 2012

BASIC ELECTRONIC RESOURCES

- Félix García Carballeira . Material de Diseño de Sistemas Distribuidos: http://www.arcos.inf.uc3m.es/~dsd
- INRIA . Simgrid simulator: http://simgrid.gforge.inria.fr