uc3m Universidad Carlos III de Madrid

Modeling and simulation of complex systems

Academic Year: (2020 / 2021) Review date: 09-07-2020

Department assigned to the subject:

Coordinating teacher: CUERNO REJADO, RODOLFO

Type: Electives ECTS Credits: 6.0

Year: 2 Semester: 1

OBJECTIVES

- * Global vision over complex systems and emergent behavior.
- * Ability to model complex phenomena in simple terms which allow to capture their main qualitative aspects.
- * Become acquainted with standard tools employed in interdisciplinar research.
- * Understand the relation between a system complexity and that of the models employed to study it.
- * Understand basic concepts of thermodynamics and statistical mechanics as a framework of choice to study systems composed by a large numbers of agents.
- * Understand the concept of emergent properties or global behavior which can not be directly inferred from single agent properties.
- * Familiarity with basic notions and tools on critical phenomena as a paradigm of transitions among different emergent behaviors.
- * Familiarity with basic phenomenology of nonlinear systems, in particular with the ideas of stability and bifurcation.
- * Understand the implications of deterministic chaos as long-term umpredictability, different from stochasticity.
- * Employ fractal dimensions as set-characterizing tools.
- * Familiarity with the use of basic numerical tools for simulation.

DESCRIPTION OF CONTENTS: PROGRAMME

Part I: Large number of agents in equilibrium

- 1. Introduction: Thermodynamicas and Statistical Mechanics
 - 1.1. Thermodynamics
 - 1.2. Phase transitions
- 2. Critical phenomena
 - 2.1. Ising model and related systems.
 - 2.2. Continuum descriptions
 - 2.3. Mean-field and Gaussian approximations
 - 2.4. Scaling theories and the renormalization group
- 3. Heterogeneity
 - 3.1. Percolation
 - 3.2. Critical properties
 - 3.3. Related models

Part II: Nonlinear dynamics

- 4. Introduction
 - 4.1. Paradigmatic models
- 5. Finite number of degrees of freedom
 - 5.1. Phase portrait
 - 5.2. Linerized stability
 - 5.3. Non-linear behavior: bifurcations
- 6. Infinite number of degrees of freedom
 - 6.1. Pattern formation
 - 6.2. Reaction-diffusion systems

6.3. Bifurcation analysis

- 7. Chaotic dynamics
 - 7.1. Recurrences in one dimension
 - 7.2. Routes to chaos
 - 7.3. Probabilistic descriptions

LEARNING ACTIVITIES AND METHODOLOGY

Lecture hours (1.4 ECTS)

- * Theory sessions.
- * Practical sessions: hands-on demonstrations, exercise solving, etc.

Tutoring, mentoring, etc. (1.4 ECTS)

Autonomous student work (3.2 ECTS)

ASSESSMENT SYSTEM

Assignment resolution (including simulation-oriented assignments) (40%). Project ellaboration and public presentation (60%). On the second round an extraordinary exam may be offered (60%).

% end-of-term-examination: 60 % of continuous assessment (assignments, laboratory, practicals...): 50

BASIC BIBLIOGRAPHY

- G. Nicolis Introduction to Nonlinear Science, Cambridge University Press, 1995
- K. Christensen, N. R. Moloney Complexity and Criticality, World Scientific, 2005

ADDITIONAL BIBLIOGRAPHY

- D. Stauffer, A. Aharony Introduction to Percolation Theory, Taylor and Francis, 1994
- G. Nicolis, C. Nicolis Foundations of Complex Systems, World Scientific, 2007
- J. H. Holland Complexity: A Very Short Introduction, Oxford University Press, 2014
- N. Goldenfeld Lectures on Phase Transitions and the Renormalization Group, Addison Wesley, 1993
- S. Strogatz Nonlinear Dynamics and Chaos, Perseus Books, 1994
- S. Thurner, R. Hanel, P. Klimek Introduction to the Theory of Complex Systems, Oxford University Press, 2018
- Y. Bar-Yam Dynamics of Complex Systems, Addison-Wesley, 1997