uc3m Universidad Carlos III de Madrid

Computación Gráfica

Curso Académico: (2020 / 2021) Fecha de revisión: 07-09-2020

Departamento asignado a la asignatura: Coordinador/a: RECIO ISASI, GUSTAVO Tipo: Obligatoria Créditos ECTS: 3.0

Curso: 1 Cuatrimestre: 2

OBJETIVOS

Competencias específicas de la materia:

- 1. Capacidad para utilizar y desarrollar metodologías, métodos, técnicas, programas de uso específico, normas y estándares de computación gráfica.
- 2. Capacidad para proyectar, calcular y diseñar productos, procesos e instalaciones en todos los ámbitos de la Ingeniería Informática.
- 3. Capacidad para el aprendizaje continuado, autodirigido y autónomo.

Resultados de aprendizaje:

- 1. Conocer los fundamentos de la computación gráfica, así como los algoritmos fundamentales que se utilizan en la generación de gráficos por computador.
 - Capacidad para aplicar las metodologías, métodos, y técnicas de computación gráfica.
- 3. Conocer las principales normas y estándares de computación gráfica.
- 4. Capacidad para usar programas de modelado y visualización de objetos gráficos.
- 5. Capacidad para diseñar sistemas que hagan uso de la computación gráfica.

DESCRIPCIÓN DE CONTENIDOS: PROGRAMA

- 1. Conceptos básicos de Computación Gráfica.
- 2. Modelado de objetos 3D.
- Curvas y superficies
- 3. Algoritmos fundamentales de Computación Gráfica. Rendering
- Trazado de ravos
- Iluminación
- Graphics pipeline
- 4. Fundamentos de Animación
- Interpolación (Keyframing)
- Representación e interpolación de orientaciones (cuaterniones)
- Cinemática directa e inversa
- 5. Animación: dinámica
- Sistemas de partículas
- Solido rígido
- 6. Animación: comportamientos
- Bandadas (flocking)
- Animación de multitudes

ACTIVIDADES FORMATIVAS, METODOLOGÍA A UTILIZAR Y RÉGIMEN DE TUTORÍAS

(AF1) Clases teóricas: explicación de conceptos teóricos, pero también resolución de casos prácticos en ocasiones utilizando herramientas de computación gráfica.

(AF4) (AF6) Prácticas en áulas informáticas individuales o en grupo

Dentro de esta materia se llevarán a cabo prácticas, preferentemente en grupo. Por una parte los estudiantes realizarán prácticas que complementen los conceptos de computación gráfica utilizando técnicas y algoritmos propios de dichos sistemas y familiarizándose con programas de uso habitual en el modelado y visualización de objetos gráficos.

(AF8) Exámen

MD1. CLASE TEORÍA. Exposiciones en clase del profesor con soporte de medios informáticos y audiovisuales, en las que se desarrollan los conceptos principales de la materia y se proporcionan los materiales y la bibliografía para complementar el aprendizaje de los alumnos.

MD2. PRÁCTICAS. Resolución de casos prácticos, problemas, etc. planteados por el profesor de manera individual o en grupo.

MD3. TUTORÍAS. Asistencia individualizada (tutorías individuales) o en grupo (tutorías colectivas) a los estudiantes por parte del profesor.

SISTEMA DE EVALUACIÓN

La evaluación tiene como misión conocer el grado de cumplimiento de los objetivos de aprendizaje, por ello se valorará todo el trabajo del alumno, individual o colectivamente, mediante la evaluación continua de sus actividades a través de los ejercicios y exámenes, trabajos prácticos y otras actividades académicas formativas descritas anteriormente.

La nota final tendrá en cuenta las actividades individuales del alumno y las actividades de equipo. La nota final es la suma de dos componentes:

- (SE2) Evaluación continua (70%): habrá varias prácticas relacionadas con temas explicados durante el curso. Los alumnos trabajarán en grupos de dos personas.
- (SE3) Examen final (30%): el alumno se examinará sobre temas, tanto teóricos como prácticos, vistos durante el curso.

La nota final se obtendrá sumando las calificaciones de la evaluación continua y del examen final. Si el alumno no ha realizado la evaluación continua, podrá realizar un examen con un valor del 60% de la nota final.

La evaluación en la convocatoria extraordinaria se realizará con los mismos criterios que en la ordinaria.

Peso porcentual del Examen Final: 30
Peso porcentual del resto de la evaluación: 70

BIBLIOGRAFÍA BÁSICA

- Dalai Felinto, Mike Pan Game Development with Blender, Cengage Learning PTR; 1 edition, 2013
- Daniel Thalmann, Soraia Raupp Musse Crowd Simulation, Springer, 2012
- John M. Blain The Complete Guide to Blender Graphics: Computer Modeling and Animation, A K Peters/CRC Press; 1 edition, 2012
- Rick Parent Computer Animation: Algorithms and Techniques. 3 edition, The Morgan Kaufmann Series in Computer Graphics, 2012
- Shirley Fundamentals of Computer Graphics, Second Edition, AK Peters.

BIBLIOGRAFÍA COMPLEMENTARIA

- Foley, J.D Computer Graphics. Principles and Practice, Addison Wesley.
- Hearn, D. Gráficas por computadora, PrenticeHall.
- Pimentel, K Virtual Reality, Windcrest.
- Rolf R. Hainich The End of Hardware, 3rd Edition: Augmented Reality and Beyond, BookSurge Publishing.
- Tomas Akenine-Moller Real-Time Rendering, AK Peters, 2008
- XIANG ZHI GANG Schaums Outline of Computer Graphics, McGrawHill, 1991