uc3m Universidad Carlos III de Madrid

Electrical Drives

Academic Year: (2020 / 2021)

Department assigned to the subject:

Coordinating teacher: MONTILLA D'JESUS, MIGUEL EDUARDO

Type: Compulsory ECTS Credits : 6.0

Year : 4 Semester : 1

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

-Magnetic circuits and transformers -Control Engineering -AC Electric machines

OBJECTIVES

-Ability to selection, analysis, and size of electric drives.

-To know the schemes of the electric motors speed control

-Ability to control an electric drive and simulate dynamic response

DESCRIPTION OF CONTENTS: PROGRAMME

LESSON 1. Introduction to electric drives and mechanical system

1.1) Introduction, Law of Motion for electric drives.

1.2) Basic principles of mechanics (moment-of-inertia, angular acceleration, gearbox, pulleys and flexible mechanical system)

LESSON 2. Introduction to DC machines and DC-DC converters

- 2.1) Principle of operation of the separately excited and series DC motors
- 2.2) Speed control of the separately excited and series DC motors (steady-state study)
 - 2.2.1) Principles of speed control by varying applied voltage.
 - 2.2.2) Principles of speed control by varying excitation flux.
- 2.3) Rectifier AC-DC power, controlled and uncontrolled.
- 2.4) Step-Down (Buck) and Step-up (Boost) converters
- LESSON 3. DC Motor Drives
 - 3.1) Operating principles in DC-motor drives (torque control, speed control, and flux control).
 - 3.2) Speed control in the separately excited DC motor.
 - 3.3) Dynamic Model of the DC motor
- LESSON 4. AC Motor Drives (inverter)

4.1) Introduction to frond-end Inverter, Definition of Space vectors, Clarke transformation,

- and Park transformation. Inverter model in Stator Reference Frame.
 - 4.2) Operating Principles of frond-end Inverter
 - 4.3) Controller design for Inverter (space vector PWM)
 - 4.4) Limits of the Inverter.
- LESSON 5. Dynamic model of the induction motor and Scalar Speed Control
 - 5.1) Dynamic model of the induction motor (cage rotor)
 - 5.2) Scalar control of induction motors
- LESSON 6. Vector control systems for induction motors
 - 6.1) Introduction
 - 6.2) Transformation of the dynamic model of the machine for vector control
 - 6.2.1) Field Orientation Principle. Torque Control. Rotor flux Control.
 - 6.2.2) Torque-speed characteristics for vector control. Rotor flux orientation.
 - 6.2.3) Direct and indirect vector control
 - 6.3) Direct vector control induction motor fed by converter which operates as a current

source (torque, speed and flux control) 6.4) Direct vector control induction motor fed by converter which operates as a voltage source (torque, speed and flux control)

LEARNING ACTIVITIES AND METHODOLOGY

-The development of the course will be based on master classes with previous comprehensive reading of texts on some of the topics to be developed, individual tutorials. (3 ECTS credits).

-Lab practices. On the other hand, classes will be taught in the computer lab for students to develop through computer models (MATLAB / Simulink) all knowledge acquired on the DC and AC electric drives. Group and individual tutoring (3 ECTS credits)

ASSESSMENT SYSTEM

% end-of-term-examination/test:	60
% of continuous assessment (assigments, laboratory, practicals):	40
 A. ORDINARY SESSION 1 Continuous assessment (EvC) Computer Test (50 %) Homework's notes in small group (37,5%) Note of laboratory practice (12,5 %) 2 Ordinary assessment (EvO) 3 Final Note 	
-If the student PRESENTS ALL assigned homework (small group) with AVERAC he/she is SUITABLE in the lab practices:	GE TOTAL NOTE ABOVE 3 and
FINAL NOTE = $0.4*$ EvC + $0.6*$ EvO (if EvO is greater or equal to 3.5) FINAL NOTE = $0.4*$ EvC (if EvO is less than 3.5)	
-If the student DOES NOT PRESENTS ALL assigned homework (small group) v ABOVE 3 and he/she is NOT SUITABLE in the lab practices:	vith AVERAGE TOTAL NOTE
FINAL NOTE = 0,6*EvC B. EXTRAORDINARY ASSESSMENT 1 Continuous assessment (EvC)	
- Computer Test (50 %) - Homework's notes in small group (37,5%) - Note of laboratory practice (12,5 %)	
 2 Extraordinary assessment (EvE) 3 Final Note (Maximum score obtained according to the following points a and b) a) FINAL NOTE = EVE + Test lab additional if you did not attend any or all of th b) Criteria to consider continuous assessment (EvC) -If the student PRESENTS ALL assigned homework (small group) with AVE 	
and he/she is SUITABLE in the lab practices: FINAL NOTE = 0,4*EvC + 0,6*EvE (if EvE is greater or equal to 3,5) + E FINAL NOTE = 0,4*EvC (if EvE is less than 3,5) + EPLA	EPLA
-If the student DOES NOT PRESENTS ALL assigned homework (small gro NOTE ABOVE 3 and he/she is NOT SUITABLE in the lab practices: FINAL NOTE = 0,6*EvE + EPLA	oup) with AVERAGE TOTAL
In either calls the conditions to pass the subject: FINAL NOTE = > 5 (greater than or equal to 5)	
(*) Marks obtained in the laboratory for the course for subsequent courses will not b note of practices will be greater than 5.	e saved. In the ordinary call, the

- Chapman Stephen J , Máquinas Eléctricas, McGraw Hill.
- Fitzgerald Arthur Eugene, Máquinas Eléctricas., McGraw Hill.
- Fraile Mora Jesús , Máquinas Eléctricas. , McGraw Hill.
- Krause Paul C, Analysis of Electric Machinery., IEEE.
- Leonhard Werner, Control of Electrical Drives., Springer.
- Mohan Ned, Power Electronic: converter, application and design. , John Wiley & Sons.

ADDITIONAL BIBLIOGRAPHY

- Theodore Wildi Máquinas Eléctricas y Sistemas de Potencia, Prentice Hall, 2007

- Trzynadlowski, Andrzej M. The Field Orientation Principle in Control of Induction Motors, Kluwer Academic Publishers, 1994