uc3m Universidad Carlos III de Madrid

Engineering fluid mechanics

Academic Year: (2019 / 2020) Review date: 20-05-2020

Department assigned to the subject: Thermal and Fluids Engineering Department

Coordinating teacher: SEVILLA SANTIAGO, ALEJANDRO

Type: Compulsory ECTS Credits: 6.0

Year: 2 Semester: 2

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Calculus I, II
Physics I, II
Linear Algebra
Writing and Communication Skills
Programming
Thermal Engineering
Machine Mechanics

OBJECTIVES

By the end of this subject, students will be able to have:

- 1. knowledge and understanding of key aspects of fluid mechanics;
- 2. the ability to apply their knowledge and understanding to identify, formulate and solve problems of fluid mechanics using established methods;
- 3. the ability to design and conduct appropriate experiments of fluid mechanics, interpret the data and draw conclusions:
- 4. workshop and laboratory skills in fluid mechanics.
- 5. the ability to select and use appropriate equipment, tools and methods to solve problems of fluid mechanics;
- 6. the ability to combine theory and practice to solve problems of fluid mechanics;
- 7. an understanding of applicable techniques and methods in fluid mechanics, and of their limitations;

DESCRIPTION OF CONTENTS: PROGRAMME

This is a Basic course in Fluid Mechanics. Its Programme contains 7 parts:

FIRST PART: Introduction to Fluid Mechanics. The continuum hypothesis. Variables of interest.

SECOND PART: Hydrostatics: Application of Fluid Mechanics to a stagnant fluid. Pressure field in a stagnant fluid. Force and Moment acting on a solid surface. Archimedes Principle. Applications: Barometer, Manometers, Hydraulic presses ¿

THIRD PART: Basic concepts of fluid flow kinematics. Reynolds Transport theorem.

FOURTH PART: Conservation equations for fluid volumes and control volumes. Mass, Momentum and Energy conservation equations. Bernoulli equation; examples. Angular momentum equation. Applications to engineering problems.

FIFTH PART: Dimensional Analysis. The Pi theorem. Application of Dimensional Analysis to Fluid Mechanics. Relevant dimensionless numbers in Fluid Mechanics. Applications.

SIXTH PART: Flow in ducts. Flow regimes. Mechanical energy conservation applied to pipe flow with friction losses. Friction factor. Moody's chart and Colebrook equation . Localized losses in pipe systems (bends, valves, expansions, other fittings.). Illustrative examples of flow in pipes.

SEVENTH PART: External Flows

LEARNING ACTIVITIES AND METHODOLOGY

Teaching methodology will incluye:

- 1. Lectures: The students will be provided with lecture notes and recommended bibliography.
- 2. Problem solving sessions, related with the course topics
- 3. Homework problems aiming at student self-evaluation.
- 4. Development and interactive presentation of guided works, including four lab session as direct application of theory.

ASSESSMENT SYSTEM

The continuous evaluation will be based on:

- 3 guizzes that will take place during the semester
- laboratory work: 4 laboratory sessions; reports are due one week after each session

All students must do the final exam. The final grade will be the sum of 40% continuous assessment and 60% of the grade of the final exam.

In the extraordinary examination, the final grade will be either the sum of 40% continuous assessment and 60% of the grade of the final extraordinary exam or 100% of the grade of the final extraordinary exam, whatever is higher.

% end-of-term-examination: 60 % of continuous assessment (assignments, laboratory, practicals...): 40

BASIC BIBLIOGRAPHY

- Antonio Crespo Martínez Mecánica de Fluidos, Thomson.
- Frank M. White Fluid Mechanics, McGraw Hill.
- MARCOS VERA COELLO, CARLOS MARTÍNEZ BAZÁN, ANTONIO L. SÁNCHEZ PÉREZ, IMMACULADA IGLESIAS ESTRADÉ Ingenieria Fluidomecanica, Paraninfo, 2012

ADDITIONAL BIBLIOGRAPHY

- A. L. Sánchez Apuntes de Procesos Fluidotérmicos, Publicaciones de la Universidad Carlos III de Madrid., 2005
- Amable Liñán Martínez Apuntes de Mecánica de Fluidos, Publicaciones de la ETSI Aeronáuticos de Madrid, 2006