uc3m Universidad Carlos III de Madrid

Fundamentos de transitorios en redes eléctricas

Curso Académico: (2019 / 2020) Fecha de revisión: 10/07/2019 18:47:34

Departamento asignado a la asignatura: Departamento de Ingeniería Eléctrica

Coordinador/a: BURGOS DIAZ, JUAN CARLOS

Tipo: Obligatoria Créditos ECTS: 3.0

Curso: 2 Cuatrimestre: 1

REQUISITOS (ASIGNATURAS O MATERIAS CUYO CONOCIMIENTO SE PRESUPONE)

Cálculo I, Cálculo II, Álgebra Lineal.

Es necesario estar cursando, de manera simultánea, Fundamentos de Ingeniería Eléctrica

OBJETIVOS

Al terminar con éxito esta asignatura, los estudiantes serán capaces de:

- 1. Tener conocimiento y comprensión de los principios matemáticos que subyacen a la rama de ingeniería industrial.
- 2. Tener capacidad de aplicar su conocimiento y comprensión para identificar, formular y resolver problemas matemáticos en ingeniería utilizando métodos establecidos.
- 3. Tener una comprensión sistemática de los conceptos y aspectos clave de la teoría de circuitos eléctricos.
- 4. Tener capacidad de aplicar su conocimiento y comprensión para identificar, formular y resolver problemas de teoría de circuitos utilizando métodos establecidos.
- 5. Tener capacidad de diseñar y realizar experimentos, interpretar los datos y sacar conclusiones.
- 6. Tener competencias técnicas y de laboratorio.
- 7. Tener capacidad de combinar la teoría y la práctica para resolver problemas de teoría de circuitos.

DESCRIPCIÓN DE CONTENIDOS: PROGRAMA

Resolución de ecuaciones diferenciales de primer y segundo orden.

Análisis del régimen permanente y transitorio en circuitos eléctricos. Transitorios electromagnéticos en circuitos de primer y segundo orden en redes eléctricas. Resonancia.

Modelado de transitorios electromagnéticos mediante herramientas informáticas.

ACTIVIDADES FORMATIVAS, METODOLOGÍA A UTILIZAR Y RÉGIMEN DE TUTORÍAS

Clases de teoría y problemas en aulas. Clases prácticas en aulas informáticas

SISTEMA DE EVALUACIÓN

Peso porcentual del Examen/Prueba Final: 60
Peso porcentual del resto de la evaluación: 40

Ejercicios de evaluación parcial, prácticas y examen final

BIBLIOGRAFÍA BÁSICA

- Allan Greenwood Electrical Transients in Power Systems, John Wiley and Sons.
- Fraile Mora, Jesús Electromagnetismo y circuitos eléctricos, McGraw-Hill.

- R.K. Nagle Fundamentals of Differential Equations, Pearson.
- Usaola, Julio y Moreno, Mª. Ángeles, Circuitos eléctricos. Problemas y ejercicios resueltos, Pearson Educación.