uc3m Universidad Carlos III de Madrid

Biomedical Image Processing

Academic Year: (2019 / 2020) Review date: 17-05-2019

Department assigned to the subject:

Coordinating teacher: DIAZ DE MARIA, FERNANDO

Type: Electives ECTS Credits: 6.0

Year: 1 Semester: 1

OBJECTIVES

Basic competences

CB6 Having and understanding the knowledge that provides a basis or opportunity to be original in the development and/or application of ideas, often in a research context

CB7 Students know how to apply their acquired knowledge and problem-solving skills in new or unfamiliar settings within broader (or multidisciplinary) contexts related to their field of study.

CB8 Students are able to integrate knowledge and to face the complexity of making judgments based on information that, being incomplete or limited, includes reflections on the social and ethical responsibilities linked to the application of their knowledge and judgments.

CB9 Students know how to communicate their conclusions and the knowledge and ultimate reasons behind them to specialised and non-specialised audiences in a clear and unambiguous way.

CB10 Students have the learning skills that will enable them to continue studying in a way that will be largely self-directed or autonomous.

General competences

CG1 Ability to maintain continuous education after his/her graduation, enabling him/her to cope with new technologies.

CG2 Ability to apply the knowledge of skills and research methods related to engineering.

CG3 Ability to apply the knowledge of research skills and methods related to Life Sciences.

CG4 Ability to contribute to the widening of the frontiers of knowledge through an original research, part of which merits publication referenced at an international level.

Specific competences

CE4 Ability to use techniques for processing massive amounts of medical data and images.

CE5 Ability to implement medical imaging and data processing methods.

DESCRIPTION OF CONTENTS: PROGRAMME

Part I ¿ Introduction to Image Processing Digital images Basic image processing techniques Edge detection Segmentation Morphological processing Extraction of descriptors Image classification

Part II ¿ Advanced Image Processing

Visualization
Wavelets and multiresolution
Registration and fusion
Advanced segmentation
Spectral image analysis

LEARNING ACTIVITIES AND METHODOLOGY

AF3	Theoretical	practical	classes

AF4 Laboratory practices

AF5 Tutorials

AF6 Team work

AF7 Student individual work AF8 Partial and final exams

Activity code	total hours number	presencial hours number	% Student Presence
AF3	134	134	100%
AF4	42	42	100%
AF5	24	0	0%
AF6	120	0	0%
AF7	248	0	0%
AF8	16	16	100%
SUBJECT TO	OTAL 600	184	30,66%

ASSESSMENT SYSTEM

SE1 Participation in class

SE2 Individual or team works made during the course

SE3 Final exam

Evaluation systems (%)	Minimum weighting (%)	Maximum Weighting
SE1	0	20
SE2	0	100
SE3	0	60

SE1: 0%

SE2: partial exams: 75%; final project: 25%

SE3: 0%

% end-of-term-examination: 0

% of continuous assessment (assignments, laboratory, practicals...): 100

BASIC BIBLIOGRAPHY

- G. Dougherty Digital Image Processing for Medical Applications, Cambridge University Press, 2009
- Mark A. Haidekker Advanced Biomedical Image Analysis, John Willey and Sons, 2011
- Rafael C. González and Richard E. Woods Digital Image Processing, Fourth Edition, Pearson, 2018

ADDITIONAL BIBLIOGRAPHY

- P. Suetens Fundamentals of Medical Imaging, Cambridge University Press, 2009
- Wilhelm Burger and Mark J. Burge Principles of Digital Image Processing: Fundamental Techniques, Springer-Verlag, 2009
- Wilhelm Burger and Mark J. Burge Principles of Digital Image Processing: Core Techniques, Springer-Verlag, 2009