uc3m Universidad Carlos III de Madrid

Aerospace autonomous systems

Academic Year: (2019 / 2020) Review date: 08-10-2019

Department assigned to the subject: Bioengineering and Aeroespace Engineering Department

Coordinating teacher: GARCIA-HERAS CARRETERO, JAVIER

Type: Compulsory ECTS Credits: 3.0

Year: 2 Semester: 1

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Air Navigation Systems Elements of Critical Software

OBJECTIVES

SKILLS

- 1. Acquire knowledge to create the foundations for future originality in the development and application of ideas, often in a research and innovation context.
- 2. Acquire the capacity to integrate knowledge and face the complexity of judging given information that is incomplete and might include subjective reflexions on social responsibility and ethics.
- 3. Acquire the capacity to integrate the complex aerospace system and work in multidisciplinary teams.
- 4. Acquire the capacity to analyze and establish correction measures for the environmental impact of the developed technical solutions.
- 5. Acquire capacity for the analysis and resolutions of aerospace problems in new or unknown environments, within broad and complex contexts.
- 6. Competence in all areas related to airport, aeronautical or space technologies that, by their nature, are not exclusive to other branches of engineering.
- 7. Adequate knowledge of Avionics and Onboard Software, and of the Simulation and Control techniques used in air navigation.

LEARNING OUTCOMES

By successfully completing this course, the student should be able to:

- 1) Understand the technologies that apply to aerospace autonomous systems, including legislation, economical and industrial frameworks, and vehicle design.
- 2) Understand the mathematical foundations of some of the fundamental systems used of autonomous navigation, including the dynamics of quad-rotors, and the principles of inertial measurement units and Kalman Filters.
- 3) Understand how these systems can be simulated aided by computers
- 4) Understand how these knowledge can be incorporated into state of the art hardware.
- 5) Understand the different elements that compose a quad-rotors, including hardware and software, learn how to ensemble them, calibrate the vehicles, and finally fly it in an autonomous way.

DESCRIPTION OF CONTENTS: PROGRAMME

Block I: Technology that applies to autonomous vehicles

Legislation
Socio-economical Aspects
Applications
Industry
Types of vehicles
Design particularities

Block II: Autonomous Navigation.

Quadcopter dynamics

IMU: accelerometers and gyroscopes

Estimation: Kalman filter

Block III: Quad-rotor ensambly lab.

Introduction to Arducopter; IMU Integration; Quad-rotor ensambly; Controllers calibration; Flight Testing.

LEARNING ACTIVITIES AND METHODOLOGY

TEACHING ACTIVITES

Theoretical sessions

Practical sessions (exercises)

Labs in computer room

Hands-on labs

Individual work by the student

Group work

TEACHING METHODOLOGY

Class exposition with the aid of computers and audiovisuals, and on the blackboard. Development of concepts and analysis of the bibliographic material

Critical lecture of different material: technical reports, papers, manuals.

Resolution of exercises posed by the Professor.

Elaboration of reports and oral communications by the student

ASSESSMENT SYSTEM

Continuous Evaluation: 40%

- a) Homeworks.
- b) Quadcopter ensembly/flight test lab (oral communication)

Exam: 60%

Theory Block I, Theory Block II, Problems Block II and Questions about the labs.

Minimum final exam mark is 4 (out of 10) in order to go for the continuous evaluation.

% end-of-term-examination: 60

% of continuous assessment (assignments, laboratory, practicals...): 40

BASIC BIBLIOGRAPHY

- Donald Norris Build Your Own Quadcopter: Power Up Your Designs with the Parallax Elev-8, McGraw-Hill/TAB Electronics, 2014

- Kenneth Robert Britting Inertial Navigation Systems Analysis, Artech House, 2010
- Robert M. Rogers Applied Mathematics in Integrated Navigation Systems, American Institute of Aeronautics and Astronautics, 2007
- Valavanis, Kimon P., Vachtsevanos, George J. (Eds.) Hanbook of Unmanned Aerial Vehicles., Springer, 2015

ADDITIONAL BIBLIOGRAPHY

- Herbert Goldstein Classical mechanics, Addison-Wesley Pub. Co, 1980
- Kenzo Nonami Ph.D., Farid Kendoul Ph.D., Satoshi Suzuki Ph.D., Wei Wang Ph.D., Daisuke Nakazawa Ph.D. (auth.) Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles, Springer, Tokio, 2010
- Paul Zarchan, Howard Musoff, Frank K. Lu Fundamentals of Kalman Filtering:: A Practical

Approach, AIAA (American Institute of Aeronautics & Astronautics), 2009

- Mohinder S. Grewal, Angus P. Andrews Kalman Filtering: Theory and Practice with MATLAB, Wiley, 2015 (4th edition)
- Donald Norris Build Your Own Quadcopter: Power Up Your Designs with the Parallax Elev-8, McGraw-Hill/TAB Electronics, 2014
- Guowei Cai, Ben M. Chen, Tong Heng Lee (auth.) Unmanned Rotorcraft Systems, London, 2011

Springer-Verlag

- Michael Margolis Arduino Cookbook, O'Reilly, 2012
- Norris Build Your Own Quadcopter: Power Up Your Designs with the Parallax Elev-8, Mc Grawhill, 2014
- Reg Austin Unmanned Aircraft Systems: UAVS Design, Development and Deployment, Wiley, 2010