uc3m Universidad Carlos III de Madrid

Transmission and distribution of energy

Academic Year: (2019 / 2020) Review date: 08/05/2020 20:52:56

Department assigned to the subject: Electrical Engineering Department

Coordinating teacher: LEDESMA LARREA, PABLO

Type: Compulsory ECTS Credits: 6.0

Year: 3 Semester: 2

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Solution of AC electrical circuits using phasors (e.g. Electrical Power Engineering Fundamentals in UC3M)

OBJECTIVES

By the end of this content area, students will be able to:

- 1. know and understand the scientific and mathematical principles underlying the analysis and design of power systems
 - 2. systematicly understand the key aspects and concepts of power system operation
- 3. apply their knowledge and understanding to identify, formulate and solve power system problems using established methods
 - 4. apply their knowledge and understanding to design power systems that meet specified requirements
 - 5. demonstrate computer skills applying software tools to the analysis of power systems
 - 6. combine theory and practice to solve power system problems
 - 7. use diverse effective methods to communicate orally with the engineering community and with society at large

DESCRIPTION OF CONTENTS: PROGRAMME

Transmission and distribution grids

Transmission voltages

Meshed and radial grids

Power quality

Basic mathematical models of lines, transformers, loads and generators

Per unit quantities

Power lines

Conductors

Insulators

Pylons

Mechanical tension

Mathematical models of a line

Power flow and voltages in a line

Corona effect

The power flow problem

Power flow equations

Newton-Raphson method

Modified N-R methods

Voltage control

Shunt-connected coils and capacitors

Automatic voltage regulation in power plants

Tap changer transformers

Ferranti effect Voltage control in a distribution system	
Voltage control in a transmission system	
Substations	
Disconnectors Circuit breakers	
Measurement transformers	
Substation configurations	
Frequency control	
Primary regulation Secondary regulation	
Tertiary regulation	
Protection systems	
Characteristics of a protection system	
Time/current relay Fault clearing time and transient stability	
Emerging technologies in power systems	
Energy load management	
Electric vehicles Smart meters	
Smart grid	
LEARNING ACTIVITIES AND METHODOLOGY	
Practical work in the computer laboratory	
Theoretical classes Solution of practical problems in class	
Individual tutorials	
Individual presentations of the students	
ASSESSMENT SYSTEM	
% end-of-term-examination/test:	40
% of continuous assessment (assigments, laboratory, practicals):	60
Continuous Assessment: (AS*0.8 + QZ*0.1 + OP*0.1)*AT	
where - AS = Assignments	
- QZ = Quizzes	
- OP = Oral presentation	
- AT = Attendance and participation	
Ordinary call:	
- Continuous assessment 60% - Final exam 40%	
Extraordinary call: Most favorable option between	
- Continuous assessment 50%	
- Final exam 50%	
and - Final exam 100%	
a. 5/am 10070	
BASIC BIBLIOGRAPHY	
- Grainger, Stevenson Power System Analysis, McGraw-Hill.	

BAS

- P. Kundur Power System Stability and Control, EPRI.

- Pieter Schavemaker; Lou van der Sluis Electrical Power System Essentials, John Wiley & Sons, 2008