Tratamiento Avanzado de Señales

Curso Académico: (2019 / 2020) Fecha de revisión: 27/03/2019 09:23:55

Departamento asignado a la asignatura: Coordinador/a: RAMÍREZ GIL, DAVID Tipo: Optativa Créditos ECTS: 6.0

Curso: 1 Cuatrimestre: 1

REQUISITOS (ASIGNATURAS O MATERIAS CUYO CONOCIMIENTO SE PRESUPONE)

Se suponen conocimientos básicos de

- teoría de la probabilidad y estadística,
- álgebra lineal.

OBJETIVOS

- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigacion.
- Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolucio¿n de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su a¿rea de estudio.
- Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Comprensión sistemática de un campo de estudio y dominio de las habilidades y me¿todos de investigacio¿n relacionados con dicho campo. (CG 1)

Capacidad de realizar un análisis crítico y de evaluacio¿n y si¿ntesis de ideas nuevas y complejas. (CG4) Ser capaces de realizar un análisis crítico de documentos te¿cnicos y científicos del ámbito del Procesado de Señal y Comunicaciones;

- Ser capaces de poseer una visión exhaustiva del estado del arte de una tecnología del ámbito del Procesado de Señal v Comunicaciones, así como realizar un análisis de sus perspectivas futuras:
- Ser capaces de elaborar un trabajo original de entidad en un campo específico del Procesado de Señal y Comunicaciones, incluyendo la preparación de una presentación del mismo y su exposición y defensa;
- Saber aplicar conocimientos de matemáticas, estadística y ciencia a los problemas de Procesado de Señal y Comunicaciones;
- Poseer las habilidades para diseñar y llevar a cabo experimentos, así como analizar e interpretar datos
- Conocer y dominar técnicas básicas y avanzadas de procesado de señal (filtrado lineal óptimo y adaptativo, filtrado estocástico en sistemas dinámicos, modelos de predicción, análisis espectral, procesado en array) y sus aplicación
- Capacidad para resolver problemas de estimación y predicción en sistemas dinámicos, incluyendo la construcción de modelos de espacio de estados y el diseño y análisis de algoritmos numéricos para filtrado estocástico.
- Comprensión en profundidad los algoritmos adaptativos de máxima pendiente, mínimos cuadrados y no lineales y capacidad para aplicarlos de forma eficiente en problemas de procesamiento adaptativo de señales.

DESCRIPCIÓN DE CONTENIDOS: PROGRAMA

- + Estimación de parámetros.
 - Estimadores bayesianos
 - Estimadores basados en riesgo
 - Estimadores de parámetros no aleatorios

- Modelos de variables latentes
- + Test de hipótesis y clasificación de señales
 - Test de hipótesis bayesiano, Neyman-Pearson, compuesto
 - Clasificación de señales
 - Prestaciones asintóticas
- + Estimación de señales
 - Estimación MMSE
 - Estimación y predicción lineal
 - Filtrado adaptativo
- + Tratamiento de señal basado en modelos
 - Cadenas de Markov
 - Modelos ocutos de Markov

ACTIVIDADES FORMATIVAS, METODOLOGÍA A UTILIZAR Y RÉGIMEN DE TUTORÍAS

La asignatura se imparte en aulas y laboratorios específicos para el Programa de Postgrado. Entre otras, se utilizan las siguientes herramientas en la metodología docente:

- Clases magistrales para la presentación, desarrollo y análisis de conocimientos sobre los cuales el estudiante es evaluado.
- Realización de ejercicios prácticos (problemas, prácticas en laboratorio) de manera individual.
- Realización de un trabajo por cada parte de la asignatura (filtrado óptimo y filtrado adaptativo).
- Tutorías en grupo

SISTEMA DE EVALUACIÓN

Peso porcentual del Examen/Prueba Final:

0
Peso porcentual del resto de la evaluación:

100

La evaluación del estudiante se lleva a cabo de forma continua, mediante supervisión de los ejercicios teóricos y prácticos realizados por los alumnos, así como las presentaciones de trabajos en modo oral y la defensa de los proyectos.

Convocatoria extraordinaria: consistirá en un examen oral de 30 minutos de duración sobre los contenidos impartidos en el curso. La calificación de la convocatoria dependerá exclusivamente del resultado de este examen.

BIBLIOGRAFÍA BÁSICA

- Murphy, K.P. Machine Leaning. A probabilistic perspective, MIT Press, 2012
- Poor, V An Introduction to Signal Detection and Estimation, Springer, 1994

BIBLIOGRAFÍA COMPLEMENTARIA

- Barber, D Bayesian Reasoning and Machine Learning, Cambridge University Press, 2012
- Bishop, C.M. Pattern Recognition and Machine Learning, Springer, 2006