uc3m Universidad Carlos III de Madrid

Statistics II

Review date: 30/04/2019 10:15:51 Academic Year: (2019 / 2020)

Department assigned to the subject: Statistics Department Coordinating teacher: JIMENEZ RECAREDO, RAUL JOSE

Type: Compulsory ECTS Credits: 6.0

Year: 2 Semester: 1

REQUIREMENTS (SUBJECTS THAT ARE ASSUMED TO BE KNOWN)

Statistics I

OBJECTIVES

SPECIFIC SKILLS:

Students will acquire knowledge and skills necessary to:

- 1. Perform statistical inference in one population
- 2. Understand the key concepts in hypothesis testing
- 3. Become familiar with the issues of comparing two populations
- 4. Interpret and apply the concepts of the simple linear regression model
- 5. Carry out the abovementioned analyses in statistical software

GENERAL SKILLS

Students will be able to:

- 1. Develop their ability to think analytically
- 2. Become familiar with a statistical software
- 3. Establish a framework to solve problems
- 4. Develop their interactive skills
- 5. Enhance their critical thinking
- 6. Improve their learning skills and communication

DESCRIPTION OF CONTENTS: PROGRAMME

Chapter 1. Inference in one population

- 1.1 Introduction: parameters and statistical inference
- 1.2 Point estimators
- 1.3 The estimation of the mean and variance
- 1.4. The sampling distribution of the sample mean
- 1.5 Estimation using confidence intervals
 - 1.5.1 Confidence interval for the mean of a normal population with known variance
 - 1.5.2 Confidence interval for the mean in large samples
 - 1.5.3 Confidence interval for the mean of a normal population with unknown variance: t distribution
 - 1.5.4 Confidence interval for the variance of a normal population

Chapter 2. Basic concepts in hypothesis testing

- 2.1 Definition of a test of hypothesis
- 2.2 The null and alternative hypotheses
- 2.3 Type I and type II errors, power of the test
- 2.4 The concept of p-value and decision-making
- 2.5 Main steps needed to perform a test of hypothesis

Chapter 3. Comparing two populations

- 3.1 Independent samples from two populations
- 3.2 Inference for the population means in small samples
- 3.3 Inference for the population means in large samples

3.4 Comparing the variances of two normal populations: the F distribution

Chapter 4. Regression analysis: the simple linear regression model

- 4.1 The goal of regression analysis
- 4.2 The specification of a simple linear regression model
- 4.3 Least-squares estimators: construction and properties
- 4.4 Inference in the linear regression model
- 4.5 Inference for the slope
- 4.6 Inference for the variance
- 4.7 Mean response and confidence intervals
- 4.8 New response and prediction intervals

Chapter 5. Regression analysis: assumptions, model diagnostics, multiple linear regression model

- 5.1 The residual analysis
- 5.2 The ANOVA decomposition
- 5.3 Nonlinear relationships and linearizing transformations
- 5.4 The linear regression model in matrix form
- 5.5 Introduction to multiple linear regression

LEARNING ACTIVITIES AND METHODOLOGY

Theory (3 ECTS): During theoretical sessions, the contents of the course will be introduced, explained and illustrated with examples. Teaching materials will be provided on the Internet.

Practice (3 ECTS): During practical sessions, black-board exercises will be solved. Software-related activities will take place in the computer labs.

In the 15th week of the term, a group-review session for the final exam will be held.

ASSESSMENT SYSTEM

% end-of-term-examination/test:	60
% of continuous assessment (assignments, laboratory, practicals):	40

40% of the grade is obtained through a final exam.

The remaining 60% from two midterms (20% + 20%) and home works related to computational practices (20%).

Students who reach at least 5/10 in average on the midterms and whose cumulated evaluation is 6/10 or higher, are exempt from taking the final exam. In that case, the final grade would be the cumulated grade duly escalated.

BASIC BIBLIOGRAPHY

- Cheng Lee Statistics for business and financial economics, World Scientific, 2000
- Paul Newbold Statistics for Business and Economics, Pearson Prentice Hall, 2010

ADDITIONAL BIBLIOGRAPHY

- Sheldon Ross Introductory Statistics, Elsevier Academic Press, 2005