Space Vehicles and Orbital Dynamics

Academic Year: (2018 / 2019)

Department assigned to the subject: Bioengineering and Aeroespace Engineering Department

Coordinating teacher: MERINO MARTINEZ, MARIO

Type: Compulsory ECTS Credits : 6.0

Year : 4 Semester : 2

OBJECTIVES

Formulate and solve orbital mechanics problems, use that knowledge to perform preliminary designs of space missions, and evaluate the capabilities of different spacecraft and space systems.

Competences: CG9, CG10, CB2, CB5, CECRA13.

DESCRIPTION OF CONTENTS: PROGRAMME

- 1. Two body problem Conservation laws Conics and orbital elements
- 2. Kepler's equation Formulation for the elliptic, parabolic, hyperbolic cases Numerical solution
- Orbital maneuvers
 Fundamentals of spherical trigonometry
 Hohmann, bielliptic transfers; plane change; phasing maneuvers, electric orbit raising
- 4. Preliminary orbit determination Gibbs problem, Gauss problem Lambert's problem Porkchop diagrams
- 5. Perturbations Special perturbation methods General perturbation methods Drag, solar radiation, third body Geopotential and spherical harmonics
- Interplanetary trajectories Patched-conics method B-Plane targeting
- 7. Relative motion and rendezvous Clohessy-Wiltshire equations
- Restricted three body problem Derivation and normalization. Jacobi's energy integral Lagrange libration points Stability and trajectories near Lagrange points
- Space vehicles: attitude dynamics
 Quaternions. Free body attitude dynamics
 Gravity gradient
- 10. Introduction to space missions and space systems Application orbits, types of missions Spacecraft subsystems

LEARNING ACTIVITIES AND METHODOLOGY

Theory sessions in master classes Problem sessions in reduced groups Computer sessions with mathematical software Personal and group work Review date: 04-06-2018

ASSESSMENT SYSTEM

End-of-term exam (60%) Continuous evaluation (40%)

In order to pass the subject, two requirements need to be met:

1) to have a MINIMUM mark of 4.0/10 in the end-of-term exam;

2) to have a minimum overall mark of 5.0/10 (weighing 60% the end-of-term exam mark and 40% the mark of the continuous evaluation).

% end-of-term-examination:	60
% of continuous assessment (assigments, laboratory, practicals):	40

BASIC BIBLIOGRAPHY

- Hanspeter Schaub and John L. Junkins Analytical mechanics of space systems, AIAA, 2003

ADDITIONAL BIBLIOGRAPHY

- Howard D. CurtisHoward D. Curtis Orbital mechanics for engineering students, Butterworth-HeinemannButterworth-Heinemann, 2013

- Peter Fortescue, Graham Swinerd, John Stark Spacecraft systems engineering, John Wiley and Sons, 2011