COMPETENCES AND SKILLS THAT WILL BE ACQUIRED AND LEARNING RESULTS.

SPECIFIC COMPETENCES: To acquire knowledge and understanding to
1. Carry out statistical analysis of univariate and bivariate data.
2. Formulate and solve basic probability problems.
3. Formulate, apply and solve basic probabilistic models.
4. Obtain point estimators for the parameters of some probability distributions.
5. Estimate by confidence intervals the mean of a population.
6. Apply statistical methods through software.

TRANSVERSAL COMPETENCES:
1. Capacity for analysis and synthesis.
2. Use of statistical software.
4. Teamwork.
5. Critical reasoning.

DESCRIPTION OF CONTENTS: PROGRAMME

PROGRAMME
1. Introduction.
 1.2. Statistical terms: populations, subpopulations, individuals and samples.
 1.3. Types of variables.
2. Analysis of univariate data.
 2.1. Representations and graphics of qualitative variables.
 2.2. Representations and graphics of quantitative variables.
 2.3. Numerical summaries.
3. Analysis of bivariate data.
 3.1. Representations and graphics of qualitative and discrete data.
 3.2. Representations and numerical summaries of quantitative data: covariance and correlation.
4. Probability.
 4.1. Random experiments, sample space, elemental and composite events.
 4.3. The law of total probability and Bayes theorem.
5. Probability models.
 5.2. Continuous random variables: The density function and the distribution function. Mean and variance of a continuous random variable.
 5.3. Probability models. Discrete probability models: Bernoulli, Binomial and Poisson.
 5.4. Continuous probability models: Uniform, Exponential and the normal distribution.
 5.5. Central limit theorem.
6. Introduction to Statistical Inference.
 6.1. Parameter point estimation.
 6.2. Goodness-of-fit to a probability distribution. Graphical methods.
6.3. Introduction to confidence interval estimation.

LEARNING ACTIVITIES AND METHODOLOGY
14 Theoretical support materials available on the Web, and 14 sessions based on problem-solving sessions and practical computing. No group tutorials except during the last week.

ASSESSMENT SYSTEM
50% of the final grade will be achieved by a final examination for assessing the knowledge acquired. The remaining 50% is obtained by two midterm exams (20%+20%) and the compulsory tasks assigned in the computational labs (10%). Theoretical questions as well as queries on computational laboratories can be asked in the exams.

| % end-of-term-examination: | 50 |
| % of continuous assessment (assigments, laboratory, practicals...): | 50 |

BASIC BIBLIOGRAPHY